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Engineering the Internet

understanding the relation between demand, capacity and
performance

to design a cost efficient network that satisfies quality of
service requirements
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From connecting endpoints to content delivery

96% of traffic is content

- web, file sharing, social networks, video streaming,...
demand depends on content placement

- caching realizes a memory for bandwidth trade-off
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From connecting endpoints to content delivery

96% of traffic is content
- web, file sharing, social networks, video streaming,...
demand depends on content placement
- caching realizes a memory for bandwidth trade-of f
caching "at the edge" brings the optimal trade-off
- but where is the edge?
QoS (latency, throughput) is not an issue
- made equally good by adequate sizing

wireless



An optimal memory-bandwidth trade-off

preferred cache size depends on overall cost of memory (cache
capacity) and bandwidth (including routers)

- more memory means less traffic and therefore less bandwidth
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An optimal memory-bandwidth trade-off

preferred cache size depends on overall cost of memory (cache
capacity) and bandwidth (including routers)

- more memory means less traffic and therefore less bandwidth
an infrastructure provider (bandwidth and storage) would seek
to optimize the trade-off

- but must do this in a complex business environment

/\/ \'f\
N | V\'
requests mmm) —) E% B
] small high "*’( - \\
S « cache bandwidth (2 - .
<4 %D N

requests mm) big T -f ) DE% f\—-\\

e ban, (B = '-
con’ren‘rh cache bandwidf ? =g = )

\




The content delivery business

since the birth of the web, ISPs have unsuccessfully sought to
realize a favourable memory for bandwidth trade-off

instead, most content is delivered using overlay content delivery
networks (eg, Akamai, but also Google, Facebook, Netflix,...)

who optimize their own costs and performance while preserving
their profitable business models
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Outline

1. cache hit rate performance
2. optimizing the memory bandwidth trade-off

hit rate

content popularity cache size and policy



Internet content mix

Cisco VNI: "96% of traffic is content transfer"

web, file sharing, user generated content, video on demand,
social networks

billions of objects, petabytes of content!

objects size volume | share
web 104 10 KB 1PB 17%
file sharing 105 10 GB 1PB 3%
UGC 108 10 MB 1PB 11%
VoD 104 100 MB 1TB 47 %

(NB. very rough, order of magnitude estimates)



Content popularity

popularity is measured by request arrival rate per byte
- eg, chunk downloads by BitTorrent peers

measurements reveal popularity decreases as a power law:
- request rate of nh most popular chunk o« 1/n¢
- ageneralized Zipf law; typically, a # 0.8
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Content popularity

cache performance depends significantly on catalogue size

our guesstimates
- 1PB for all content (YouTube, web, social networks, P2P, ...)

- 1 TB for a VoD catalogue
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Content popularity

cache performance depends significantly on catalogue size
our guesstimates

- 1PB for all content (YouTube, web, social networks, P2P, ...)

- 1 TB for a VoD catalogue
for illustration, assume Zipf(.8) popularity

- qx1/i®and X1 nGi= 1,

- N and chunk size set so catalogue size is1 TB or 1 PB

- (for large systems, performance depends on catalogue size in bytes
and not on chunk or object size)

the independent reference model (IRM)
- request is for i with probability q; independently of all past requests
- as if requests occur as stationary Poisson streams of rate g;



Hit rate and cache policy - stationary demand

“ideal" cache
- cache holds most popular items
- hit rate, h(CN) = ... g
& (C/N)-9 = h(C/N)
least recently used (LRU)
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Hit rate and cache policy - stationary demand

“ideal" cache

- cache holds most popular items

- hit rate, h(CN) = XZ... q;

& (C/N)I-9) = K(C/N)
least recently used (LRU)

- “characteristic time" approx.
h, = 1-exp(-q;t.) where t.
satisfies C=3Y h. and
h=Z2naih



Characteristic time approximation
{Che Tung-and-Wang,2002)
The "Fagin approximation”, 1977 *

"characteristic time" T, is time for C different objects to be
requested

assume random variable T, is approximately deterministic, T~ 1.
then, hit rate for object nis h, = 1-exp(-q;t;)

now, C=73, 1{objectiis in cache}

taking expectations, C=3; h;=2; (1 - exp(-q;t,))

solving numerically for t. yields h;

approximation justified in (Fricker et al, 2012)

* R. Fagin. 1977. Asymptotic Miss Ratios over Independent References.
J. Comput. System Sci. 14, 2 (1977), 222-250.
(thanks to Christian Berthet)



Hit rate and cache policy - stationary demand

“ideal” cache
- cache holds most popular items : ideal — |
- hit rate, h(CN) = XZ... q; 08 - LRU 2
& (C/N)-9) = h(C/N) 06 L |
least recently used (LRU) 0al |
- “characteristic time" approx. N=10*
h; = 1 - exp(-q;t.) where 1, e 7
satisfies C=3 h, 0 | |
- asignificant performance 1 10 100 1000 10000

penalty for small caches cache size C




Hit rate and cache policy - stationary demand

cache with "pre-filter”

- on cache miss, only add new
item if included in previous K
requests

= h{mh = (1 - exp(-qit,)) »

(hi™ + (1-h™)(1 - (1-q,)))

- where h(™ is hit rate of nth
request for item i

- for stationary demand h"1) =
h=h, C=% h;yields *,

but pre-filters slow reactivity
to popularity changes ...
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Time varying popularity

many items are short-lived, cf. [Traverso 2013]
- we assume the most popular have shortest lifetimes
IRM assumption is not appropriate when demand is low
- eg, the first request for a new item is necessarily a miss

lifetime interval | proportion mean
of items lifetime
0-2 days 5% 1.1 days
2-5 days 8 % 3.3 days
5-8 days 5% 6.4 days
8-13 days 8 % 10.6 days

> 13 days (or < 10 97.4 % 1 year

regs)




Hit rates with finite lifetimes

model after [Wolman 1999]: item i always has popularity q; but
changes after each lifetime
LRU hit rate with mean item lifetime T,
- first request after change must miss
- hi= (1-exp(-qit.)) x (qiT; / (1 + qiTy))
LRU hit rate with pre-filter
- recall: ™ = (1 - exp(-qt) * (h® + (1-h®)(L - (1-g)) (=)
- assume item i changes after n* request with probability 1 - n,where
ni=qr/ (1+qm)
- then, h;= h) (1-n)+h@n(1-n)+hBn2(1-n)+-
- multiply () by n," and add eventually yields h;



Impact of time-varying popularity

hit rate depends on demand since first requests in lifetime
always miss (first for LRU, first 2 for LRU with pre-filter)

1 | full capacity
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filter

0.8

0.6

hit rate

0.4

0.2

0.001 0.1 10

requests per day per object



Impact of time-varying popularity

hit rate depends on demand since first requests in lifetime
always miss (first for LRU, first 2 for LRU with pre-filter)
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Application to access network

hit rate
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Implications

content:
1TB

or1PB

we need proactive caching at AN and below (eg base stations)
- ie, network must proactively upload the most popular items
proactive caching needs some function to predict popularity
- by being informed of requests from a large user population
- and applying data analytics...
content providers can measure popularity, ISPs typically can't
- user preference data is highly sensitive and jealously guarded



Outline

1. cache hit rate performance
2. optimizing the memory bandwidth trade-off
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Evaluating the trade-off

cache at Central Office (~200 Gb/s) or Access Node (~2 Gb/s)

caches have ideal performance (eg, proactive or pre-filter)
popularity is Zipf(.8) with a catalogue of 1 TB or 1 PB
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Evaluating the trade-of f

overall cost of cache and bandwidth is

- A(C) = Ky(Tx(1-h(C))) + K, (C)

- where T is download traffic, h(C) is hit rate,

Ky(D) and K,,(C) are cost functions for demand D and cache C

to simplify, assume linear cost functions

- K (D) = kyxD, K, (C) = k,xC

- where k, and k,, are marginal costs of bandwidth and memory
consider normalized cost 8(c) for relative cache size ¢ = C/N

- 8(c) = A(C)/k N =Tx(1-h(c))+c (ie, 8(1)=1and 3(0)=T)

- where T = k,T/k,N is ratio of max bandwidth cost to max cache cost
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Normalized cost

A(C) is combined cost of memory and bandwidth
A(C) = K, (Tx(1-h(CN))) + K, (C)
= k, xTx(1-h(CN)) + k.. C
let 8(c) = A(C)/k,N and write h(C,N) = h(C/N) = h(c)
d(c) is combined cost normalized by maximum storage cost
d(c) = k, T/ kN x (1-h(c)) + ¢
=TI (1-h(c)) + ¢ where
= k,T/k,N = max bandwidth cost / max cache cost

optimal trade-off maximizes A(C) and (c)



Normalized cost v normalized cache size

normalized cost 8(c) = Mx(1-h(c)) + ¢ = Tx(1-c%2) + ¢
where I = k, T/k, N is max bandwidth cost / max cache cost
if I 25, max cache is optimal (c=1, ie, C=N)
if T <5, there is optimal cache size for 0<c«<1
- eg, for ' = .1, min cost for c=.008, h(c)=.37 for gain # 30%
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Cost and demand guesstimates

cost of bandwidth: k, = $2 per Mb/s per month

cost of memory: k., = $.03 per GB per month

if N=1PBand T=2006b/s, T = k,T/k N = 13 (CO, large N)
if N=1PBand T=26Gb/s, ' # .13 (AN, large N)
ifN=1TBand T=26b/s, ' # 130 (AN, small N)
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Remarks on trade-off

key factor is I = Tk, / Nk, where N is catalogue size
- T = max bandwidth cost / max storage cost
eg, trade-off is favourable at CO - ie, cache all
- (except for lowest popularity items excluded in Zipf approx)
eg, trade-off at AN is optimal if N = 1 PB at cache size ~30 TB
- 40% hit rate, ~30% cost reduction over no cache
realizing the optimal trade-off relies on CP cooperation
- pushing the right amount of most popular contents to cache
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Realizing the optimal trade-off

 ina 2-sided market, CPs have no cost incentive place content to
optimize ISP infrastructure

content providers
pay for content ) o

ISP

users

-

pay for
connectivity P > 4
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Optimal placement: CPs have the data but are
hardly motivated in a 2-sided market

CPs (eg, Akamai, Facebook, YouTube, Netflix) have highly
profitable business models based on exclusive knowledge of
customer usage

- ad placement, recommendations, billing, marketing dataq, ...

transparent caching by ISP is not an option

- CPs need to track demand and control delivery

- CPs know content popularity and don't want anyone else to know
CPs can decide content placement but, as the subsidy side of a
2-sided market, have no incentive to optimize ISP investments

- they currently do not pay ISPs for the cost of their traffic

- they do install their own caches in the ISP (eg, Google Global
Cache) but their economic motivation is different



Price subsidies for an optimal trade-off

ISP advertises cost functions, K,(T) and K, (C)
charges CP P, (T) for traffic T without cache (C = 0)
- where 0 <P (T) < K,(T), depending on negotiation
cost with cache C, A(C) = K (C) + K,(T (1-h(C))) yielding gain G,(C,T)
- 6,(C,T) = Kp(T) - Ki(€) - Ky(T (1-h(C)))
a subsidy o 6., (C,T) for some a (0 < o< 1) incites CP to optimize
trade-off, yierding ISP gain (1-a) 6,
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A workable solution?

CPs currently pay varying amounts to ISPs, sometimes zero and
never the full cost of their traffic

- ISPs can play on performance to "extort” payment (cf. Comcast
versus Netflix in 2014) but not to optimize content placement

the memory for bandwidth subsidy proposal is mainly orthogonal
to this 2-sided market negotiation
- more favourable to high demand, small catalogue CPs (eg, Netflix)
- but network neutral, transparent pricing
ISP may not like paying CPs but subsidies are a win-win solution
- both gain, it remains to decide the best sharing ratio (a.: 1- )
more complex pricing is needed to optimize content placement
downstream of the access node (eg, in 5G base stations)
- work in progress ...



Summary

understanding the relation between demand, capacity and
performance, for a cost-effective infrastructure

to evaluate the memory for bandwidth trade-off and optimize
the cost of infrastructure
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Summary

- a complex business environment

- where content providers (Akamai, Google, Netflix,...) have acquired
expertise and need to conserve their advantageous business models

- as the subsidy side of a 2-sided market

* to realize the optimal trade-off, ISP must further subsidize CPs
for their content placement decisions

- pricing such that subsidy is maximal for the optimal frade-off
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