Criação de thesauros distribucionais: estudo de parâmetros e robusteza

Muntsa Padró

Instituto de Informática UFRGS

Dezembro 2013

Goals

- ▶ Study the robustness of distributional thesauri.
- ► Evaluate different filter methods and parameters.

Distributional Thesauri

► Given a target word, learn from data lists of similar words.

Example:

Eat: consume, devour, dine, swallow...

▶ Basic idea: similar words tend to appear in similar contexts.

Distributional Thesauri

- Several works study different ways to stablish similarity between words:
 - What is context?
 - ► Bag of Words
 - Dependency relation
 - ▶ How do we assess the relevance of a context?
 - Frequency
 - ► PMI
 - ► LMI
 - **-** ...
 - How to compute similarity between words?
 - ▶ Lin's measure
 - ► Cosine
 - Jaccard
 - ▶ ..

In this work

- ► Focus on one common method for building thesauri: Lin measure (Lin, 1998).
- Study how context filtering modify it.
- ► More work has been done in comparing measures than studying the robustness in a given measure.

Lin measure

- ▶ Use dependency parsed corpus.
- ► Contexts are triples.
- ► Asses relevance of triples using PMI.
- ► Computes similarity using Lin's formula.

Contexts are triples

"O gato come peixe"

Context of "comer":

- "Gato" is the subject
- "Peixe" is the direct object

Codified as triples:

- ► (gato,subj,comer)
- ► (peixe,dobj,comer)

General Idea

- ► For each verb, extract the triples it appears in, this is, the set of contexts.
- ▶ This triples allow us to compute similarity.
- But some triples may introduce noise, some filters need to be applied.

Context Filters

- **1.** Filter tripples by its frequency: remove triples under *th* frequency.
- **2.** Keep most *p* relevant triples per verb. How to compute relevance?
 - ► Sort by frequency.
 - ► Sort by PMI.
 - ► Sort by LMI (frequency x PMI)

Context Filters

- **1.** Filter tripples by its frequency: remove triples under *th* frequency.
- **2.** Keep most *p* relevant triples per verb. How to compute relevance?
 - ► Sort by frequency.
 - ► Sort by PMI.
 - ► Sort by LMI (frequency x PMI)

Building the Thesauri

- ▶ BNC Corpus (English), parsed with RASP.
- Focus on verbs.
- ► Extract triples for all verbs appearing more than 50 times.
- Filter triples with one of the filters (minimum threshold or maximum number of triples).
- ► Compute similarity for all pairs of verbs to create a thesaurus

Goal: Study thesauri built with the different filters, studying influence of different parameters of each filter.

Evaluation

- ► Each verb has a list of neighbours.
- ▶ The neighbours are sorted by decresing similarity.
- ▶ Top rated neighbours should be the most similar verbs.
- ► Evaluate those lists comparing with WordNet

Compare with WordNet

- ► Take the first k neighbors of a verb
- ► Compute average WordNet path similarities
- Compute the average over all verbs
- ► First neighbours should be closer, so smaller *k* should have more similarity

Conclusion

- Different filters lead to different results.
- ▶ The parameters of a given filter also change the results.
 - ▶ We should put more attention on what filters we use
- Frequency issues!
 - Methods for improving similarity measures for low frequent verbs should be developed

Gràcies!

Obrigada!