Multilingual Term Extraction

Kassius Vargas Prestes

Schedule

- 1 Task
- 2 Objective and Motivation
- 3 Term Extraction
 - 3.1 Preprocessing
 - 3.2 Methods
- 4 Experiments
- 5 Future Work

Task

- Term extraction from specific domain corpora
- Focus on multiword terms

- Specific domain
 - Software Enineering
 - Medicine, Molecular Biology GENIA

Objective and Motivation

- Build multilingual dictionaries and ontologies to help automatic translators
- Geographically distributed software development teams
- They need to communicate with specific vocabulary
- Automatic translation can be improved with domain terminology

Preprocessing

- Tokenize the text
 - Regular Expressions
 - Can be different for each corpus
 - Genia terms contain characters like +-[]()
 - ca2+-modulating cyclophilin ligand
 - v-(d)-j recombinase activity
- Extract all n-grams from text
 - n from 2 to specified parameter

Preprocessing

- Filter extracted pairs by POS
 - \circ NN
 - \circ AN
 - \circ NA
 - \circ NNN
 - \circ NNA
 - \circ NAN
 - \circ ANN
 - 0 ...
- This step allow us to discard candidates like:
 - of the, in the, ...
 - basically, expressions with articles and prepositions that are very frequent and not interesting

Methods

- Actually implemented
 - Frequency
 - o c/nc-value (Frantzi; Ananiadou; Tsujii, 1998)
 - Association Measures
 - Pointwise Mutual Information
 - Log-Likelihood Ratio
 - Poisson Stirling Measure
 - Mutual Information
- To be implemented
 - Contrastive Weight (BASILI et al., 2001)

Frequency

 Simple count of number of occurrences in the corpora

C-value

- Try to assign better scores to maximal term candidates, i. e., candidates that are not contained in another candidate
 - score of real time clock > real time

$$C - value = \log_2 |a| f_a - \frac{1}{|T_a|} \sum_{b \in T_a} f_b$$

a is a term

f_a is the frequency of a

T_a is the set of all terms containing a

C-value

- Try to assign better scores to maximal term candidates, i. e., candidates that are not contained in another candidate
 - score of real time clock > real time

$$C - value = \log_2 |a| f_a - \frac{1}{|T_a|} \sum_{b \in T_a} f_b$$

a is a term

f_a is the frequency of a

T_a is the set of all terms containing a

For maximal terms, this component will be 0

NC-value

- Used to boost c-value score
- Try to look the words that occur together with terms - "adjacent words"
- Compute a score for "adjacent words"
- Boost c-value with better scores to term candidates that occur with higher scored "adjacent words"

NC-value

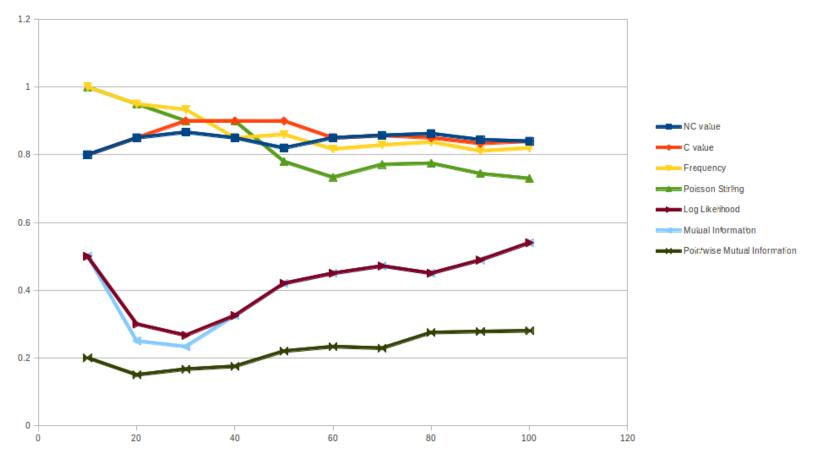
Adjacent Words score

$$weight(w) = t(w) / T$$

where:

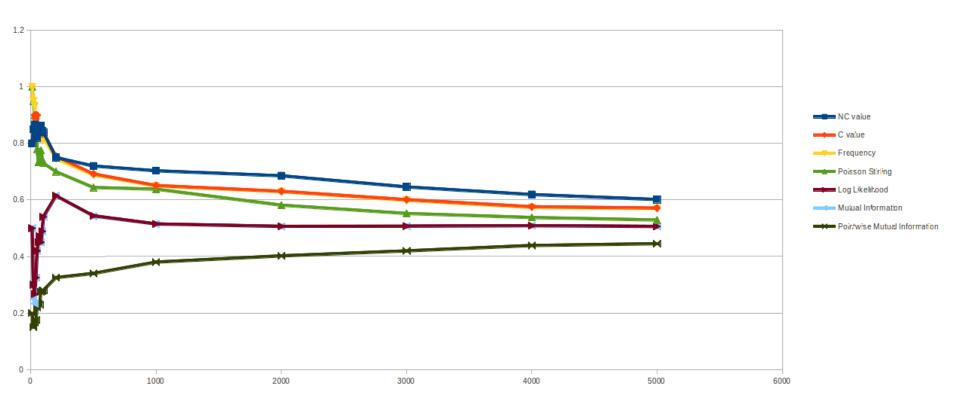
w is an adjacent word t(w) is the number of terms that occur with w T is the total number of terms analysed

NC-value


$$NC - value = 0,8 * C - value(a) + 0,2 * \sum_{b \in C_a} f_a b * weight(b)$$

f_ab is the frequency that b occurs with a C_a is the set of adjacent words of term a

First Experiments


GENIA corpus

o p@10 - p@100

First Experiments

- GENIA corpus
 - o p@10 p@5000

Future Work

- Evaluate extraction of terms of software engineering manuals. (ISO, IEEE)
- Glossary as gold standard
- Algorithms of term Alignment

Multilingual Term Extraction

Kassius Vargas Prestes kassius vargas prestes @gmail.com